9 research outputs found

    Jamming and Unjamming in Cancer Cells

    Get PDF
    Jamming' ist ein faszinierender, nicht vollständig verstandener Prozess in der Physik der weichen Materie. Zelluläres Jamming' tritt auch in biologischem Gewebe auf und muss sich im Fall von Krebszellen im Tumorgewebe aufgrund der dichten Packung der Zellen über der dichtesten Kugelpackung anders verhalten als die bekannten 'Jamming' Systeme. In meiner Dissertation skizziere ich wesentliche Ergebnisse zum Verständnis dieses neuen physikalischen Phänomens. Meine Erkenntnisse tragen dazu bei die Dichotomie zwischen den Theorien der dichteinduzierten und der forminduzierten 'Zelljamming' aufzulösen. Die gewonnenen Erkenntnisse weisen auf die Möglichkeit hin Krebszellformen und deren Zellkernformen als Tumormarker für die Metastasierung zu verwenden. Ich fand ein kritisches Skalierungsverhalten für die Dynamik der Neuanordnung von Zellen in der Nähe des Jamming-Übergangs, abhängig von der Zellform der Nachbarschaft. Dies ist der bisher stärkste Beweis dafür, dass die Zellformen als Kontrollparameter für das 'Zelljamming' fungieren können. Die Zellanzahldichte beeinflusst ebenfalls das 'Jamming', ihr Einfluss kann jedoch als eine Verlangsamung der Eigengeschwindigkeit der Zellen beschrieben werden. Eine hohe Zellanzahldichte allein würde also nur die Viskosität des Gewebes erhöhen und es nicht verfestigen. Darüber hinaus habe ich gezeigt, dass es in dicht gepackten dreidimensionalen Zellsphäroiden sowie in Primärtumorstücken einen mit der Zellform verbundenen 'Jamming'-Übergang gibt. Ich verbinde das 'Unjamming' von Zellen mit dem Fortschreiten des Krebses, indem ich zeigte, dass die Herunterregulierung des Adhäsionsmoleküls E-Cadherin, die ein typischer Schritt während der Krebentwicklung ist, einen 'Unjamming'-Übergang verursacht. Bei diesem 'Unjamming'-Übergang kommt es zu einem ausgeprägten Verlust der Kohäsion und einem reduzierten Volumenanteil der Zellen, was zeigt, dass das 'Zelljamming' einen hohen Volumenanteil erfordert

    Anomalous cell sorting behavior in mixed monolayers discloses hidden system complexities

    Get PDF
    In tissue development, wound healing and aberrant cancer progression cell–cell interactions drive mixing and segregation of cellular composites. However, the exact nature of these interactions is unsettled. Here we study the dynamics of packed, heterogeneous cellular systems using wound closure experiments. In contrast to previous cell sorting experiments, we find non-universal sorting behavior. For example, monolayer tissue composites with two distinct cell types that show low and high neighbor exchange rates (i.e., MCF-10A & MDA-MB-231) produce segregated domains of each cell type, contrary to conventional expectation that the construct should stay jammed in its initial configuration. On the other hand, tissue compounds where both cell types exhibit high neighbor exchange rates (i.e., MDA-MB-231 & MDA-MB-436) produce highly mixed arrangements despite their differences in intercellular adhesion strength. The anomalies allude to a complex multi-parameter space underlying these sorting dynamics, which remains elusive in simpler systems and theories merely focusing on bulk properties. Using cell tracking data, velocity profiles, neighborhood volatility, and computational modeling, we classify asymmetric interfacial dynamics. We indicate certain understudied facets, such as the effects of cell death & division, mechanical hindrance, active nematic behavior, and laminar & turbulent flow as their potential drivers. Our findings suggest that further analysis and an update of theoretical models, to capture the diverse range of active boundary dynamics which potentially influence self-organization, is warranted

    Prognostic relevance of gene-expression signatures

    Full text link
    Cancer prognosis can be regarded as estimating the risk of future outcomes from multiple variables. In prognostic signatures, these variables represent expressions of genes that are summed up to calculate a risk score. However, it is a natural phenomenon in living systems that the whole is more than the sum of its parts. We hypothesize that the prognostic power of signatures is fundamentally limited without incorporating emergent effects. Convergent evidence from a set of unprecedented size (ca. 10,000 signatures) implicates a maximum prognostic power. We show that a signature can correctly discriminate patients' prognoses in no more than 80% of the time. Using a simple simulation, we show that more than 50% of the potentially available information is still missing at this value.Comment: 27 pages, 6 figures, supporting informatio

    Jamming and Unjamming in Cancer Cells

    No full text
    Jamming' ist ein faszinierender, nicht vollständig verstandener Prozess in der Physik der weichen Materie. Zelluläres Jamming' tritt auch in biologischem Gewebe auf und muss sich im Fall von Krebszellen im Tumorgewebe aufgrund der dichten Packung der Zellen über der dichtesten Kugelpackung anders verhalten als die bekannten 'Jamming' Systeme. In meiner Dissertation skizziere ich wesentliche Ergebnisse zum Verständnis dieses neuen physikalischen Phänomens. Meine Erkenntnisse tragen dazu bei die Dichotomie zwischen den Theorien der dichteinduzierten und der forminduzierten 'Zelljamming' aufzulösen. Die gewonnenen Erkenntnisse weisen auf die Möglichkeit hin Krebszellformen und deren Zellkernformen als Tumormarker für die Metastasierung zu verwenden. Ich fand ein kritisches Skalierungsverhalten für die Dynamik der Neuanordnung von Zellen in der Nähe des Jamming-Übergangs, abhängig von der Zellform der Nachbarschaft. Dies ist der bisher stärkste Beweis dafür, dass die Zellformen als Kontrollparameter für das 'Zelljamming' fungieren können. Die Zellanzahldichte beeinflusst ebenfalls das 'Jamming', ihr Einfluss kann jedoch als eine Verlangsamung der Eigengeschwindigkeit der Zellen beschrieben werden. Eine hohe Zellanzahldichte allein würde also nur die Viskosität des Gewebes erhöhen und es nicht verfestigen. Darüber hinaus habe ich gezeigt, dass es in dicht gepackten dreidimensionalen Zellsphäroiden sowie in Primärtumorstücken einen mit der Zellform verbundenen 'Jamming'-Übergang gibt. Ich verbinde das 'Unjamming' von Zellen mit dem Fortschreiten des Krebses, indem ich zeigte, dass die Herunterregulierung des Adhäsionsmoleküls E-Cadherin, die ein typischer Schritt während der Krebentwicklung ist, einen 'Unjamming'-Übergang verursacht. Bei diesem 'Unjamming'-Übergang kommt es zu einem ausgeprägten Verlust der Kohäsion und einem reduzierten Volumenanteil der Zellen, was zeigt, dass das 'Zelljamming' einen hohen Volumenanteil erfordert

    Jamming and Unjamming in Cancer Cells

    No full text
    Jamming' ist ein faszinierender, nicht vollständig verstandener Prozess in der Physik der weichen Materie. Zelluläres Jamming' tritt auch in biologischem Gewebe auf und muss sich im Fall von Krebszellen im Tumorgewebe aufgrund der dichten Packung der Zellen über der dichtesten Kugelpackung anders verhalten als die bekannten 'Jamming' Systeme. In meiner Dissertation skizziere ich wesentliche Ergebnisse zum Verständnis dieses neuen physikalischen Phänomens. Meine Erkenntnisse tragen dazu bei die Dichotomie zwischen den Theorien der dichteinduzierten und der forminduzierten 'Zelljamming' aufzulösen. Die gewonnenen Erkenntnisse weisen auf die Möglichkeit hin Krebszellformen und deren Zellkernformen als Tumormarker für die Metastasierung zu verwenden. Ich fand ein kritisches Skalierungsverhalten für die Dynamik der Neuanordnung von Zellen in der Nähe des Jamming-Übergangs, abhängig von der Zellform der Nachbarschaft. Dies ist der bisher stärkste Beweis dafür, dass die Zellformen als Kontrollparameter für das 'Zelljamming' fungieren können. Die Zellanzahldichte beeinflusst ebenfalls das 'Jamming', ihr Einfluss kann jedoch als eine Verlangsamung der Eigengeschwindigkeit der Zellen beschrieben werden. Eine hohe Zellanzahldichte allein würde also nur die Viskosität des Gewebes erhöhen und es nicht verfestigen. Darüber hinaus habe ich gezeigt, dass es in dicht gepackten dreidimensionalen Zellsphäroiden sowie in Primärtumorstücken einen mit der Zellform verbundenen 'Jamming'-Übergang gibt. Ich verbinde das 'Unjamming' von Zellen mit dem Fortschreiten des Krebses, indem ich zeigte, dass die Herunterregulierung des Adhäsionsmoleküls E-Cadherin, die ein typischer Schritt während der Krebentwicklung ist, einen 'Unjamming'-Übergang verursacht. Bei diesem 'Unjamming'-Übergang kommt es zu einem ausgeprägten Verlust der Kohäsion und einem reduzierten Volumenanteil der Zellen, was zeigt, dass das 'Zelljamming' einen hohen Volumenanteil erfordert

    Anomalous cell sorting behavior in mixed monolayers discloses hidden system complexities

    No full text
    In tissue development, wound healing and aberrant cancer progression cell–cell interactions drive mixing and segregation of cellular composites. However, the exact nature of these interactions is unsettled. Here we study the dynamics of packed, heterogeneous cellular systems using wound closure experiments. In contrast to previous cell sorting experiments, we find non-universal sorting behavior. For example, monolayer tissue composites with two distinct cell types that show low and high neighbor exchange rates (i.e., MCF-10A & MDA-MB-231) produce segregated domains of each cell type, contrary to conventional expectation that the construct should stay jammed in its initial configuration. On the other hand, tissue compounds where both cell types exhibit high neighbor exchange rates (i.e., MDA-MB-231 & MDA-MB-436) produce highly mixed arrangements despite their differences in intercellular adhesion strength. The anomalies allude to a complex multi-parameter space underlying these sorting dynamics, which remains elusive in simpler systems and theories merely focusing on bulk properties. Using cell tracking data, velocity profiles, neighborhood volatility, and computational modeling, we classify asymmetric interfacial dynamics. We indicate certain understudied facets, such as the effects of cell death & division, mechanical hindrance, active nematic behavior, and laminar & turbulent flow as their potential drivers. Our findings suggest that further analysis and an update of theoretical models, to capture the diverse range of active boundary dynamics which potentially influence self-organization, is warranted

    Anomalous cell sorting behavior in mixed monolayers discloses hidden system complexities

    No full text
    In tissue development, wound healing and aberrant cancer progression cell–cell interactions drive mixing and segregation of cellular composites. However, the exact nature of these interactions is unsettled. Here we study the dynamics of packed, heterogeneous cellular systems using wound closure experiments. In contrast to previous cell sorting experiments, we find non-universal sorting behavior. For example, monolayer tissue composites with two distinct cell types that show low and high neighbor exchange rates (i.e., MCF-10A & MDA-MB-231) produce segregated domains of each cell type, contrary to conventional expectation that the construct should stay jammed in its initial configuration. On the other hand, tissue compounds where both cell types exhibit high neighbor exchange rates (i.e., MDA-MB-231 & MDA-MB-436) produce highly mixed arrangements despite their differences in intercellular adhesion strength. The anomalies allude to a complex multi-parameter space underlying these sorting dynamics, which remains elusive in simpler systems and theories merely focusing on bulk properties. Using cell tracking data, velocity profiles, neighborhood volatility, and computational modeling, we classify asymmetric interfacial dynamics. We indicate certain understudied facets, such as the effects of cell death & division, mechanical hindrance, active nematic behavior, and laminar & turbulent flow as their potential drivers. Our findings suggest that further analysis and an update of theoretical models, to capture the diverse range of active boundary dynamics which potentially influence self-organization, is warranted

    Cell and Nucleus Shape as an Indicator of Tissue Fluidity in Carcinoma

    No full text
    International audienceTissue, cell, and nucleus morphology change during tumor progression. In 2D confluent cell cultures, different tissue states, such as fluid (unjammed) and solid (jammed), are correlated with cell shapes. These results do not have to apply a priori to three dimensions. Cancer cell motility requires and corresponds to a fluidization of the tumor tissue on the bulk level. Here, we investigate bulk tissue fluidity in 3D and determine how it correlates with cell and nucleus shape. In patient samples of mamma and cervix carcinoma, we find areas where cells can move or are immobile. We compare 3D cell spheroids composed of cells from a cancerous and a noncancerous cell line. Through bulk mechanical spheroid-fusion experiments and single live-cell tracking, we show that the cancerous sample is fluidized by active cells moving through the tissue. The healthy, epithelial sample with immobile cells behaves more solidlike. 3D segmentations of the samples show that the degree of tissue fluidity correlates with elongated cell and nucleus shapes. This correlation links cell shapes to cell motility and bulk mechanical behavior. We find two active states of matter in solid tumors: an amorphous glasslike state with characteristics of 3D cell jamming and a disordered fluid state. Individual cell and nucleus shape may serve as a marker for metastatic potential to foster personalized cancer treatment
    corecore